Arachidonoyl-CoA synthetase. Separation from nonspecific acyl-CoA synthetase and distribution in various cells and tissues.

نویسندگان

  • M Laposata
  • E L Reich
  • P W Majerus
چکیده

Arachidonoyl-CoA synthetase was solubilized from a particulate fraction of calf brain and human platelets using 1% Nonidet P-40 and 10 mM EDTA. Arachidonoyl-CoA synthetase from both preparations was separated from nonspecific (long chain) acyl-CoA synthetase (EC 6.2.1.3) by chromatography on hydroxylapatite. To further substantiate that the two acyl-CoA synthetases are distinct proteins, we solubilized enzyme from a mutant cell line lacking arachidonoyl-CoA synthetase and from the parent cell line from which it was derived. These preparations were chromatographed on hydroxylapatite, and the mutant showed an absence of the peak identified as arachidonoyl-CoA synthetase in the parent while retaining the peak of nonspecific acyl-CoA synthetase activity. We have also determined the levels of arachidonoyl and nonspecific acyl-CoA synthetase in 13 different human cells and tissues. Arachidonoyl-CoA synthetase is widely distributed and is present in significantly lower concentrations than nonspecific acyl-CoA synthetase only in adipose tissue and liver.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identity between palmitoyl-CoA synthetase and arachidonoyl-CoA synthetase in human platelet?

Apparent Km values have been determined for the substrates ATP, CoA and fatty acids for the long-chain acyl-CoA synthetase (EC 6.2.1.3) reaction in lysates of human blood platelets. The apparent Km for ATP was higher for saturated fatty acids (C12:0 to C18:0) than for unsaturated acids (C18:1 to C22:6). Other apparent Km values were very similar for all long-chain fatty acids tested. Palmitic a...

متن کامل

Fatty acid structural requirements for activity of arachidonoyl-CoA synthetase.

We have examined the fatty acid substrate specificity of arachidonoyl-CoA synthetase from human platelet membranes. A variety of positional isomers and chain-length analogs of arachidonic acid [20:4(5, 8, 11, 14)] were synthesized, and assayed for their ability to inhibit arachidonoyl-CoA formation or to serve as substrates for the synthetase. The chain-length specificity of the synthetase for ...

متن کامل

The effects of ginsenoside Rb1 on fatty acid β-oxidation, mediated by AMPK, in the failing heart

Objective(s): This study intended to investigate the effects of Ginsenoside-Rbl (Gs-Rbl) on fatty acid β-oxidation (FAO) in rat failing heart and to identify potential mechanisms of Gs-Rbl improving heart failure (HF) by FAO pathway dependent on AMP-activated protein kinase (AMPK). Materials and Methods: Rats with chronic HF, induced by adriamycin (Adr), were randomly grouped into 7 groups. Gs-...

متن کامل

Structure and regulation of rat long-chain acyl-CoA synthetase.

Complementary DNAs encoding rat long-chain acyl-CoA synthetase have been isolated. The cDNAs were identified using synthetic oligonucleotide probes based on partial amino acid sequences of lysyl endopeptidase peptides of the purified enzyme. Rat long-chain acyl-CoA synthetase is predicted to contain 699 amino acid residues and to have a calculated molecular weight of 78,177. Significant sequenc...

متن کامل

Biochemical demonstration of the involvement of fatty acyl-CoA synthetase in fatty acid translocation across the plasma membrane.

Fatty acyl-CoA synthetase, the first enzyme of the beta-oxidation pathway, has been proposed to be involved in long chain fatty acid translocation across the plasma membrane of prokaryotic and eukaryotic cells. To test this proposal, we used an in vitro system consisting of Escherichia coli inner (plasma) membrane vesicles containing differing amounts of trapped fatty acyl-CoA synthetase and it...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 260 20  شماره 

صفحات  -

تاریخ انتشار 1985